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PARTTALLY CONSTRAINED IMPINGING JETS

ABSTRACT

Qualitative explanations of the motion of shaped charge liners have
been baf;ed on impact of two plane Jjets in which the moving fluid is
surrounded by four stagnant regions, all at the same pressure. Actually,
the motion is initiated by the difference hetween the high pressure in
the detonation products on one side of the liner and atmospheric pressure
on the other. This report considers symmetrical impact of two Jjets, each
partially constrained on one or both sides, in which the stagnant reglons
are not all at the same pressure.
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1. INTRODUCTION

Treatises on hydrodynamics generally contaln discussions of two standard
examples of plane incompressible jet flows; viz.:

a. Efflux of liquid with high pressure at infinity from & reservoir
with straight walls into a Jjet surroundcd by stagnant fluid at lower pressure;

b. Impact of two jets, in which the moving fluid is surrounded by four

regions of stagnant fluid, all at the same pressure.

Contemplation of these examples suggests the problem, to determine the fol-
lowing flow:

c. Impact of two Jets, each partially constrained on one side by straight
wells, in which the jets are also partially bounded by four regions of stagnant
fluild, not all at the same pressure.

The symmetrical form of (c), shown schematically in Fig. 1 (with an inflection
point Ah on the high pressure boundary), will be discussed in this note.

A perfectly obvious generalization of (c) is

d. Impact of two jets, each partially constrained on both sides by
straight walls, in which the Jjets are also bounded by four regions of stagnant
fluid, not all at the same pressure.

The symmetrical form of this flow is discussed at the end of this note by
straight forward modifications of the mathematical apparatus used to describe (c).

The flows to be constructed are interesting for their own sakes as Jets
that can be described explicitly in relatively simple terms. Additionel in-
terest might be stimulated by the following considerations. Flows of type (b)
have been used to suggest a qualitative explanation of the motion of the liner
of a shaped charge. In reaslity, the mofion is produced by the difference be-
tween the high pressure in the detonation products on one side of the liner and
atmospheric pressure on the other side. Furthermore, at an intermediate stage
only part of the liner has collapsed or begun to collapse, while the rest is
still rigid. In an admittedly imperfect way flows (c) and (d) more nearly
approximate these features than (b). '



We note also that various pressures, velocities, and widths are referred
to in Fig. 1, and four additional parameters will appear in the discussion
in the following sections. Let us suppose we have experimental measurements
of the angles 03, Oh, the three widths hl’ h3, and h5’
(which might be atmospheric pressure) and the density p of the jets. Then
we could apply the seven equations (2.3), (3.4) - (3.6), (4.4), (4.6), and
(4.8) to determine the four relatively uninteresting mathematical parameters
and the three important physical parameters P5» Ul, and Us, (which will be
defined in equations 2.4 and 2.5).

and assume we know pl

2. MATHEMATICAL FORMULATION OF PROBLEM

Plane irrotational incompressible flow can be characterized by a complex
potential function

(2.1) P(z) = g+ 1v.

Here 6(2) is an analytic function of the complex variable z = x + iy, ¢ is
the velocity potential function, ¥ the stream function, and

(2.2) w=u-1iv=ad/dz

is the complex velocity. The pressure p within the jets is determined by
Bernoulli's equation

(2.3) p+ % pl W ‘c = ¢ nstant
Conditions on the Jjet boundaiies are characterized by

(2.%) P=2,, a=1,5,

and thus |w| assumes corresponding constant values
(2.5) |¥]=V, a=1,5.

To seek §(z) or w(z) directly in the z-plane is hopeless, since the
location of the jet boundaries characterized by (2.%4) or (2.5) is not known
e priori. The classical artifice for overcoming this difficulty is to invert
(2.2) to determine

(2.6) z = £(w)

where f 1s an analytic function of w. Then straight-streamlines (walls, or
the axis of symmetry) have as their images in the w - or hodograph-plene seg-

ments of lines through the origin, and free Jet boundaries correspond to arcs

8



of circles (2.5) with centers at the origin. Thus the impinging jets of Fig. 1
map onto the interior of the region shown in Fig. 2. The circular cuts AiAh
?

A6A has been in-

| B |
and AéAh appear as & matter of necessity, while the cut A 5

5

troduced for later convenience,

Boundary conditions and other relevant properties of f(w) cen be determined
as follows. On the straight streamlines of Fig. 1 dz is parallel to W and daw
is parallel to w. Thus on all stralght segments shown in Fig. 2

L
(2.7) In w° dz/aw = Im vof = 0

On the free jet boundaries, which are also streamlines, dz is again parallel
to W, and or the circular arcs (2.5) aw is parallel to iw. Thus on all cir-
cular arcs shown in Fig. 2

L]
(2.8) Re wedw/dz = Re Wt (w) =0
To guarantee finite non-zero jet widths at infinity in the z-plane, f£(v, should
1 ] 1
have logarithmic singularities at Al’A3’H3’A5' At A2’A2’Ah’Ah and at A6 the

function f£(w) shorld be finite, and as a matter of convenience, arbitrarily

choose
(2.9) f£(0) = o.
3. CONFORMAL MAPPING OF HODOGRAPH IMAGE ONTO HALF-PLANE

1
As an aid to determining the functional form of w2f (w) 1t will be con-
venlent to map the interlior of the curve shown in Fig. 2, slit along A5A6’ onto
a half plane. To do this, first note that

(3.1) W = log (w/Ul)

maps the region in question onto the region with polygonal boundery shown in
Fig. 3. 1If we take account of symmetry, then by the Schwarz-Christoffel
formuls, )

¢ 2 2
(3.2) w='°’[ 5 (gz-zh)ggz 0.5
o [0 -an)(e"ec)] ™

will, for suitable choices of the positive parameters

vhere 1 SesS8< a5
a, 33, a, , and a5 Yleld the desired mapping onto the upper half of the {-plane.



In the calculation of (3.2), use that branch of the integrand that is positive
for ¢ > B For later reference we also note that

2 2
(3.3) Loav_ _ o (¢7-s;)
I TGN )(c2 2 o
2
-§ ) a
3.4) QI = a[ = -0
( [(1-¢%) (26" ) (gt )] ° ’
[ > ah‘E ) a
(3.5) I, = = log U, /U
et )1 L") (a5 ) (a5 ™2 v
(3.6) I J'ah 6 -aﬁ) - e,-0
a =Q = -
’ 3 2 2 2y, 2 .24 0.5 3k
8.3 E(g -l)(§ -6‘5)(8'5'5 )
(3.7) I fs (gg-aﬁ) * =n+ ©
. al =a = N
b D] >

The constent & can be evaluated as follows. Since the only singularities
of dW/d ¢ are at + 1, + 8y and + 8 then

-ho (1, + I+ I),) = 50 '+C o (aw/ae)ae = fc (aw/ae )ae
3

where Cl, 02, and C, are paths shown schematically in Fig.h, and C is & circle

3

| £] = const > a_. Clearly

5
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2

f(Whn@=-a €1+ ..)a = - 2tia
C 0

Since by (3.4) to (3.7), - hai (Il + I3 + Iu) = - L4ni, this yields
(3.8) o= 2,

4. CONSTRUCTION OF f(w)

1
Recall that wof (w) is alternately real or pure imaginary on the segments
1
of the real axis of the { plane with end points A7 and Ay , for y =2, 3, 5,

Thus it must have branch points at these places, and should contain a factor

2 r/2,,2 2s /2,2 2\t/2
(62 )22 - 2972 - By
> >
vhere r, s, and t are odd integers. Since f should have logarithmic sin-
1
gularities at A, A8 and AS’ &= 3, 5, then df/dt should have simple poles at

the corresponding points. Since furthermore f should be finite at A, and

2
A; this suggests the form
(x.1) 2" () 0T
.1 w i (w)= =
E(e% - a) 07 (6 - ap)(e? - e2)

The factor ;2 - &ﬁ in the denominator will enable us to include the case

8), =8, in the following discussion. Now, by (4.1) and (3.3)
(h.2) a _ e .
LV P )(Eed)

where B > O merely determines the geometrical scale in the z = f(g) plane
Since w(ao) = 0, then by (2.9) f(w(oo)) = £(0) = 0, end

11



t
(4.3) £(¢) = J. (at/at)at.
00

The uniqueness of our choice for (4.1) can be shown as follows. Let us
multiply the left members of (4.1) and (%.2) by an analytic function H(t).
To preserve the alternation of real and imaginary values of wef'(w) on the
real axls, H must be real there. To prevent the introduction of new branch
points and singularities, H must have no singularities in the closed upper-
half plane, and the analytical continuation of H into the lower half plane
is also free of singularities. Hence H is constant.

It remains to show that f(w) has the desired properties at Ay Agy A,
?
and Ay. First note that { = O corresponds to w = U;. Thus by (3.1) and (3.2)

¢ = (w-U) glw - )

where g is an analytic function of w - U; and g(0) #= 0. Since df/dt has a
simple pole at £ = 0, then f(w(f)) has a logarithmic singularity there, and

thus f(w) also has a logarithmic singularity at w = Ul' A similar argument

determines the behavior of f at { = + ea.3 or # as, with the unimportant dif-
ference that, for example, (%.1) and (3.2) imply

-i8

-10
(¢t - a3)°'5 = (v - Uge SYn(w - Use 3)

where h is analytic, h(0) % 0, etc. Hence f£(w) has the required logarithmic
singularities.

By (3.2), in the neighborhood of infinity

oo

A -n
%% = -2 Z Cng

1

vwhere c, = 1. Hence W = -2 log ¢ + m(1/t) where m is an analytic function of
1/t. Then by (3.1)

v =t 2 (/L)
where n is analytic and n(0) %= 0. Then by (4.2)

12



ag/at = ¢t 2 7 Jk(1/t)
where k is analytic and k(0) 5 0. Thus £({) will be regular at oo.

The width of the Jjet at Al in the z-plane can be determined by consid-

ering the expansions

o . 2p +
T 2 2 vt
Ula5 a5§
f=01- 262 108;"’0..
v.a_ &
135

Then the Jjump in Im log { at { = O ylelds for the width at Al

2 2
(%.4) h, =28 ,r/ula3 8

and rate of mass flow
2 a2
375

]
Similarly, at A3 or A3 we have widths
h

(4.5) M =2pnop/a

_ 2,2 2
(4.6) 5= B n/U5 85 (8.5 &3)

and rate of mass flow

_ 2,2 _ 2
(.7) My =B x p/tal5 (au5 aB)
and at A5 and A; the total width

_ 2,2 2
(4.8) h5 =28 :r/Ula.5 (a5 a3)
and

A 2,2 - 2
(4.9) My = 28 x p/eg (a5 - ;)

As we would expect from the law of conservation of mass
Mt m 2N

13



Finally, the ratio of the rate of mass flow at A to that at A; 1s

(%.10) W /4 = aé/a.? -1

In Fig. 1 the straight walls were adjacent to the low pressure regions.
Would it be possible to place them adjacent to the high pressure regions?
If we proceed purely formally, we merely have to replace the simple poles of
ar/dt at 85 by simple poles at #« 1. However, the following intuitive
considerations show that this process leads at least to an indeterminacy.
Suppose a flow of the desired type exists. For our modification consider

a log (ag/at)/at = - w Jw+ ..

Near the end of one wall the behavior of this logarithmic derivative is dom-
inated by the branch point at ¢ = 850 5<E < 8y, Iw'/w < 0. Thus,
as one would expect, the streamline leaving the wall at A3 bends initially
toward the low pressure region, as shown in Fig. 5. Now, without changing the

But for a

flow field, we can extend the walls into the stagnant high pressure regions.
Since Yy appropriate changes of scale we can always make the gap between the
ends of the extended walls be of unit length, thls means that the location of

the point of detachment A3 1s indeterminate.

5. PARTIALLY CHANNELLED IMPINGING JETS

To produce flows with impinging jets that are partially bounded by
straight walls on both sides, it will suffice to replace the simple poles of

df/d; at « &, by simple poles at # a7, where 1 < a_<a,, Now (4.2) becomes

5 73

(5.1)

- 2
w 2  _2y,,2 2
6 (¢ - a2)(¢° - 82)

AR

while (3.2) remains unchanged. The presence of the additional parameter 8,
will make it possible to vary the location of A.5 in Fig. 6, for example, while
the locations of A2 and Ab, and the directions of the walls are held constant.

14



The calculation of the various jet widths and rates of mass flow are perfectly
straightforward exercises which we shall not repeat. It should be remarked
that if there is an inflection point Ah the wall 1\71\3 can be extended into the
high pressure region again, just as in the discussion of Fig. 5.

Aok o
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